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A coherent-vortex analysis is made of a computational solution for the free decay of
homogeneous, Charney-isotropic geostrophic turbulence at large Reynolds number.
The method of analysis is a vortex detection and measurement algorithm that we call
a vortex census. The census demonstrates how, through non-conservative interactions
among closely approaching vortices, the vortex population evolves towards fewer,
larger, sparser, and more weakly deformed vortices. After emergence from random
initial conditions and a further period of population adjustment, there is a period of
approximately self-similar temporal evolution in the vortex statistics. This behaviour
is consistent with a mean-vortex scaling theory based on the conservation of energy,
vortex extremum, and vortex aspect ratio. This period terminates as the population
approaches a late-time non-turbulent end-state vortex configuration. The end state
develops out of merger and alignment interactions among like-sign vortices, and even
during the scaling regime, local clusters of nearly aligned vortices are common.

1. Introduction
Geostrophic turbulence is the name given to the nonlinear advective dynamics

of rapidly rotating, strongly stably stratified fluids. It is thus an important process
for large-scale winds and currents on Earth whose Rossby and Froude numbers are
small:

Ro =
V

fL
� 1, Fr =

V

NH
� 1, (1)

where V is a characteristic horizontal velocity, f is the Coriolis frequency for the
Earth’s rotation, N is the buoyancy frequency for the mean density stratification, L is a
typical horizontal length scale, andH is a vertical scale (the vertical direction is parallel
to gravity). For small Ro and Fr, the equations of fluid dynamics asymptotically
simplify to the quasi-geostrophic equations (QG),

Dq̃

Dt
=NCT. (2)

Here

q̃ = f + ∇2
hψ +

(
b

N2

)
z

(3)
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is the QG potential vorticity; h denotes the horizontal component of a vector; ψ is
the streamfunction for the horizontal velocity,

uh = ẑ × ∇hψ; (4)

b ≡ g(1− ρ/ρo) = fψz (5)

is the buoyancy (i.e. normalized density fluctuation away from the mean stratification);

D

Dt
= ∂t + uh · ∇h (6)

is the substantial derivative with only horizontal advection; and NCT denotes
forcing, diffusion, and any other non-conservative effects. Because we shall restrict
this paper to the f-plane (i.e. constant f), we only need to consider the potential
vorticity deviation, q = q̃ − f.

Charney (1971) presents the founding theoretical analysis of geostrophic turbu-
lence, and Herring (1980) assesses, and largely confirms, Charney’s conjectures by
using closure-theory calculations of (2)–(6). These analyses assume spatial homogene-
ity in all three directions. This situation is the most highly idealized formulation of
geostrophic turbulence that manifests its essential advective dynamics. Therefore, the
behaviour in homogeneous geostrophic turbulence is an important paradigm for theo-
retical geophysical fluid dynamics. However, spatial homogeneity is not geophysically
realistic because of boundaries and spatial variations in f and N. Furthermore, the
atmosphere and ocean are both thin fluid layers, whose aspect ratio is too small for
motions with large geographical extent to be consistent with Charney’s analysis. For
these reasons there have been many subsequent theoretical and computational studies
of geostrophic turbulence that have been either inhomogeneous in one or more of
these ways or else anisotropic in the sense of deviating from the particular form
of isotropy defined below (e.g. Rhines 1979; Salmon 1982; Hua & Haidvogel 1986;
McWilliams 1989; Metais, Riley & Lesieur 1994; Metais et al. 1996; Hua, McWilliams
& Klein 1998; Dritschel, de la Torre Juárez & Ambaum 1999). Nevertheless, in spite
of the anisotropic influences in nature, there is observational support for Charney’s
prediction about the shape of the wavenumber spectrum, in both the atmosphere
(Boer & Shepherd 1983; Nastrom & Gage 1985) and the ocean (Fu 1983; Stammer
1997).

The only prior computational study that is spatially homogeneous and appro-
priately isotropic is McWilliams, Weiss & Yavneh (1994, hereafter referred to as
MWY94). (See Appendix A for its posing and numerical methods, and a summary
of the evolutionary behaviour of its statistical moments and wavenumber spectra;
also see Clyne, Scheitlin & Weiss (1998) for additional visualizations.) This solu-
tion, too, largely confirms the cascade behaviours conjectured by Charney. There is
approximate conservation of total energy,

E =
1

2

∫∫∫
(u2
h + b2/N2) dV.

In the absence of forcing and as the Reynolds number, Re, becomes large, E is
transferred primarily towards larger scales in an inverse cascade. In contrast, there is
substantial dissipation of the potential enstrophy,

Z =

∫∫∫
q2 dV,

within a finite time at any finite Re, and Z is transfered primarily towards smaller
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scales in a forward cascade. Both of these cascades occur in all three spatial dimensions.
Furthermore, there is the possibility of isotropy in the spatial structure of ψ and q with
respect to a vertically stretched coordinate frame (x, y, Nz/f), which we call Charney
isotropy. In this frame, the relationship between streamfunction and potential vorticity
simplifies to

q = ∇2ψ, (7)

where ∇ is the three-dimensional isotropic gradient operator. MWY94 demonstrates
that Charney isotropy is approximately established and maintained by the geostrophic
turbulent cascades, in spite of the extreme anisotropy of the advection in (2) and
(6). However, there are modest but significant departures from Charney isotropy:
based on analysis of anisotropy in the wavenumber spectrum MWY94 shows that
flow structures in the ψ(x, y, z) field are relatively tall (i.e. with NH/fL > 1) on
scales larger than the peak of the energy spectrum, slightly short over a broad range
of intermediate scales, and quite short in the dissipation range at very small scales.
The first of these departures from Charney isotropy may be due to the intrinsic
anisotropy of QG at infinite length scales; the barotropic component, ψz(xh, t), has a
meaningful velocity field and advective evolution in (2), whereas the complementary
component, ψxh(z, t), has no advective evolution in (2) and thus can be absorbed into
the mean stratification by (5). The MWY94 solution has finite periodicity lengths,
hence finite wavenumber discretization, and its barotropic component grows with time
at the largest available horizontal scales in the domain. This late-time growth of the
barotropic component is also seen in the other computational studies of geostrophic
turbulence cited above, especially where the domain aspect ratio is too small for
Charney isotropy in the largest-scale baroclinic motions.

The MWY94 solution also shows the development of substantial intermittency
associated with the emergence of coherent vortices, as are also found in nature
and in computational solutions for many different regimes of turbulence. In freely
decaying, homogeneous geostrophic turbulence, the elemental coherent vortices are
compact, monopolar regions of large q (figures 1–3). Since advective dynamics is
parity symmetric in QG (i.e. the transformation (ψ, q, x, y) ↔ (−ψ,−q, x,−y) leaves
(2)–(3) unaltered), vortices of both signs behave the same and are equally likely to
develop from the random initial conditions. The vortices are approximately Charney-
isotropic, which is evident from the approximately spherical shapes in figures 1–2. As
the turbulence evolves with respect to its bulk statistical measures (e.g. energy and
enstrophy cascades, and dissipation), so too does the vortex population. There are
trends towards fewer, larger, sparser vortices. At very late times, when the inverse
cascade has transferred substantial energy to the domain scale, the elemental vortices
tend to aggregate into two columns with different signs (figure 3). These vortex
aggregation behaviours are necessarily related to inverse energy cascade and growth
of the barotropic component on large horizontal scales. The aggregation processes
are horizontal merger and vertical alignment of proximate, like-sign vortices (Verron,
Hopfinger & McWilliams 1990; Polvani 1991; Viera 1995; Sutyrin, McWilliams &
Saravanan 1998; von Hardenberg et al. 1999).

The purpose of the present paper is to report on a vortex-based statistical analysis
of the MWY94 solution. This is a useful alternative to more familiar statistical
descriptors (e.g. moments and spectra) in a situation where the vortex organization is
strong (figures 1–3). Another motivation comes from the hypothesis that geostrophic
turbulence is controlled by the self-, pair-, and collective-dynamics of its coherent
vortices. Perhaps the most direct way to demonstrate the validity of this hypothesis
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Figure 1. Potential vorticity, q(x, y, z), in the MWY94 solution at t = 5.0, shortly after vortex
emergence. Greens and blues indicate progressively more positive q, while yellows and oranges
indicate progressively more negative negative q. Locations with |q|/max [|q|] < 3% are completely
transparent and not visualized. Locations with 3% < |q|/max [|q|] < 37% are partially transparent
and seen as hazy regions. Locations with with |q|/max [|q|] > 37% are opaque and seen as solid
surfaces. For more details about the visualization technique see Clyne et al. (1998).

would be to construct a skillful vortex-based dynamical system. This has been done for
some behaviours in two-dimensional turbulence (i.e. monopolar vortices: Carnevale
et al. 1991; Benzi et al. 1992; Weiss & McWilliams 1993; Riccardi, Piva & Benzi
1995), three-dimensional turbulence (i.e. vortex filaments: Chorin 1994), and thermal
convection (i.e. plumes: Arakawa & Schubert 1974). No such theory has yet been
developed for geostrophic turbulence, and here we take the preparatory step of
describing the structure and evolution of its vortex population in relation to what
we believe are the important dynamical processes. Although we analyse only a single
solution, we believe its qualitative characteristics are representative of freely decaying
geostrophic turbulence (see Appendix A).

Our methodology for this is a vortex census algorithm that identifies the vortices in
the solution and measures their size, strength, and shape. This algorithm is adapted

Figure 2. Potential vorticity, q(x, y, z), in the MWY94 solution at t = 25.6, during the period of ap-
proximately scaling behaviour in the vortex population statistics. The format is the same as in
figure 1.

Figure 3. Potential vorticity, q(x, y, z), in the MWY94 solution at t = 72.16, as the non-turbulent
end-state vortex configuration is being approached. The format is the same as in figure 1.
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Figure 2. For caption see facing page.

Figure 3. For caption see facing page.
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from one previously applied to both two-dimensional and inhomogeneous geostrophic
turbulence solutions (McWilliams 1990a, b). The reason for re-examining the vortices
of geostrophic turbulence is that the MWY94 solution is appreciably different from
and better than the one previously analysed (McWilliams 1989) in several ways: its
resolution is finer (so Re is larger); it lacks vertical solid boundaries (and thus is
homogeneous); and, most importantly, both its formulation and initial conditions are
Charney-isotropic (see Appendix A).

2. A vortex census algorithm
Given adequate flow visualization, a coherent structure is readily perceptible

through the human adeptness at pattern recognition. Nevertheless, we need a compu-
tational algorithm to quantify its detection and measurement. The simplest detection
algorithm is a threshold in vorticity amplitude, whereby all large values are associ-
ated with coherent vortices (e.g. Benzi, Paternello & Santangelo 1986; Ohkitani 1991;
Borue 1994). Although this often is in accord with the human perception, it gives
an incorrect detection both before vortex emergence from complex initial conditions
or forcing and when vorticity filaments detach during vortex interactions before they
become weakened through dissipation. A more dynamically sophisticated possibility
is the identification of vortices with regions having distinctive eigenvalues for either
the velocity-gradient tensor (Weiss 1991; Jeong & Hussain 1995) or the Lagrangian
acceleration-gradient tensor (Hua & Klein 1998; Hua et al. 1998), although these
methods have not yet been implemented in practice. Another alternative is wavelet
filtering, which has both an orderly mathematical framework and many successes
in image processing and pattern recognition. This algorithm has successfully been
applied to the vortices of two-dimensional turbulence by Farge & Philipovitch (1993)
and Siegel & Weiss (1997). Nevertheless, based on our satisfactory previous expe-
rience, we choose to use a slightly modified form of the algorithm in McWilliams
(1990a, b) that mimics aspects of the human perception criteria. We make no further
comparisons here among alternative detection algorithms.

An ideal coherent vortex in geostrophic turbulence (figures 1–2) is axisymmetric
and monotonically decreases in q in any horizontal plane with the distance r from
its central extremum. These horizontal extrema lie along the same vertical line – the
axis – at all vertical levels. Any such q(r, z) configuration has J(ψ, q) = 0 and thus is
a stationary solution of the inviscid QG equations, (2) withNCT = 0. Furthermore,
if such a q also is of only one sign within the vortex, then this stationary solution
is demonstrably stable with respect to small perturbations by a Rayleigh integral
condition. There are occasions when q of opposite sign lies in an annulus outside the
vortex core (i.e. a shielded vortex). This allows for a possible barotropic instability.
In our solutions, though, such annular configurations are rare, with at most weak
q amplitude in the outer annulus. Also, they are usually non-persistent because the
outer annulus is often stripped away during close interactions with other vortices.
Weak q values in an outer annulus imply either vortex stability or at most a weak
instability, depending upon the particular q(r) profile. It is not uncommon, however,
for there to be multiple q extrema of the same sign along a vortex axis (i.e. q(r = 0, z)
is single signed and has multiple extrema).

We define an elemental coherent structure – a vortex element – as a vorticity dis-
tribution that monotonically decays in z as well as r from its three-dimensional q
extremum. A vortex element is thus a three-dimensional q-monopole, and the MWY94
solution demonstrates that it is by far the most common type of coherent vortex in
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homogeneous geostrophic turbulence. We use the term compound vortex to denote a
string of same-sign vortex elements connected along the axis by relatively strong q
values, and we use the term vortex cluster to denote a group of same-sign vortices that
are at least approximately aligned vertically but with intervening gaps having quite
weak q values. The processes of vortex merger and axisymmetrization lead to the
vortex elements approaching an ideal horizontal shape, and the process of alignment
causes vortex elements to amalgamate into compound vortices and clusters. Clyne et
al. (1998) demonstrates that the organization into vortex clusters sometimes can be
reversed, and the clusters can separate into independent vortex elements, although
some dissipation is involved and the process is thus not reversible in a thermody-
namic sense. Opposite-sign (i.e. dipolar) axisymmetric vortices (i.e. with a common
vertical axis) often exhibit baroclinic instability; however, with a small horizontal
displacement between their axes they can be stable and propagate horizontally (NB
the latter configuration is called a heton, or a modon when the dominant extrema are
at the same level). These opposite-sign vortex pairings occur in the MWY94 solution
only rarely and briefly. Finally, figure 3 suggests that the solution is asymptotically
approaching an end-state configuration, with two opposite-sign, well-separated clus-
ters of vortex elements and compound vortices, as a consequence of a long sequence
of close interactions that result in mergers and alignments. Such a configuration is
likely to be a stable stationary state if NCT = 0, and if so any further evolution
would be non-turbulent.

In a turbulent fluid full of vortices and other structures in q, the ideal shape
almost never occurs because of mutual deformation by the shear in the velocity fields
associated with the vortices. These deformations are small when the vortices dominate
the q pattern and are well separated from each other. The vortex census algorithm
interrogates the q(x, y, z) field at a fixed time by comparing each location with the
ideal vortex structure, and it identifies the regions where there is a close enough
correspondence to declare that a vortex has been detected. The census also measures
the properties of individual detected vortices. (In § 5 we present a cluster analysis
based on the population of detected vortices.)

The census algorithm has the following steps:
1. Extrema: Identify all three-dimensional extrema in q above a minimum ampli-

tude, q1, and spatially separated from any stronger extremum of the same sign by
a minimum number, N1, of non-extremum grid points in between. For the present
solution we choose q1 = 10.0 and N1 = 2; these values are much smaller than the typ-
ical vortex extrema and sizes. With different initial conditions, q1 should be adjusted
proportionally to the typical vortex extrema; however, by specifying N1 as a grid
number rather than a physical length, it need not be adjusted with grid resolution.

2. Axes: Identify the axes associated with all three-dimensional extrema, defined
as the line connecting horizontal extrema at adjacent levels as long as the horizontal
shift between adjacent levels is less than N2 grid points and the horizontal extremum
exceeds a fraction, f2, of the associated three-dimensional extremum. We choose
N2 = 2 and f2 = 0.2. In addition, a check is made on whether three-dimensional
extrema have intersecting axes. If so, then the weaker extremum is either discarded
as an independent extremum but attached to the stronger extremum’s axis or, if
the weakest connecting q value along the axis is weaker than f2 times the stronger
extremum, then both three-dimensional extrema are retained but their axes are
terminated at the point of weakest connecting q. With such a severed axis, the two
vortices are members of a vortex cluster.

3. Vortex elements: Identify all distinct q extrema along an axis and the associated
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weakest q amplitude on the axis segments connecting them. If the weakest amplitude
value is weaker than the fraction f3 times the weaker of the neighbouring extrema,
then that location is defined as the boundary between axis segments associated with
neighbouring vortex elements. Otherwise, the weaker of the two extrema is absorbed
into the vortex element containing the stronger extremum. We choose f3 = 0.8. If two
vortex elements have a connecting q value along the axis whose relative amplitude
lies in the range [f2, f3], then they are parts of a compound vortex.

4. Planar sets: In the horizontal plane through each vortex-element extremum,
qve, we identify the set of connected grid points where q/qve > f4. If the set contains
a stronger horizontal extremum than qve or if the planar set is not simply connected,
this vortex element is discarded as not independent. We choose f4 = 0.2. (For a more
detailed description of how the set is identified, see McWilliams 1990a.)

5. Measures: For each vortex element we calculate the following measures of its
structure. The amplitude is the absolute value of the three-dimensional extremum in
q, qve. The half-height, h, is the average of the vertical distances between a vortex-
element extremum and the upper and lower ends of its axis segment. The tilt away
from vertical alignment, T , is the sum along a vortex-element axis segment of the
horizontal displacement distances between adjacent levels divided by the vertical span
of the axis segment. T can become quite large if the axis becomes tightly wound (e.g.
as in a helix). The area of the planar set, A, is the number of grid points it contains
times ds2 (where ds is the grid pacing). The circumference of the planar set, C , is the
number of grid points on its periphery times ds. The mean radius is R =

√
A/π. The

aspect ratio is a = h/R. The centroid displacement, δ, of the planar set is the horizontal
distance between the position of the vortex-element extremum and the first-order x
and y moments of the q field (e.g. Σset xq/Σset q, etc., where Σset is the sum over all

the grid points in the set). The ellipticity of the planar set is ε =
√
λ1/λ2 − 1 > 0,

where λ1 > λ2 > 0 are the eigenvalues of the 2× 2 matrix of the second-order x and
y moments of the q field (e.g. Σset x

2q/Σset q, etc.). The circulation of the planar set is
Γ = Σset qds2, and the planar-set enstrophy is Z = Σset q

2ds2.
6. Detection criteria: For a candidate vortex element to be detected, it must also

meet the following criteria related to the planar set:

R

ds
> DR,

C

2πR
6 DC,

δ

R
6 Dδ, ε 6 Dε. (8)

These conditions are requirements that the vortex element is large enough to be at
least marginally computationally credible on the grid and that its horizontal distortion
from the ideal shape is not excessive. We choose the values DR = 1.0, DC = 1.75,
Dδ = 0.35, and Dε = 2.5, based on our fairly extensive experience with the algorithm
(see McWilliams 1990a, b). Except for times prior to vortex emergence, the detected
vortex population varies only slightly when these parameters are varied within, say,
±30%, because there are relatively few ambiguous structures in q. Note that we have
not imposed a detection condition based on T , beyond that implicit in the axis search
parameter N2, because we did not have a clear prior expectation of its distribution
in the vortex population.

Our standard procedure is to perform this census on the full spatial domain.
Because for large computational grids, such as ours, there are so many q extrema
which pass the first step in the detection algorithm, the computational burden can be
excessive. To escape this burden, we can perform the census only over a sub-domain.
The algorithm is the same as above, except that we restrict the detection to compound
vortices whose central extremum lies within the sub-domain, even if their associated
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axes, vortex elements, and planar sets extend outside it. For comparison with census
results over the full domain, we rescale all extrinsic quantities by the inverse of the
sub-domain volume fraction (e.g. the compound vortex population size, ncv), while
intrinsic quantities do not need to be rescaled (e.g. the population-averaged radius,
〈R〉, where angle brackets denote an average over all the detected vortex elements).
For the MWY94 solution, we do a full-domain census for 9.2 6 t 6 72.1 and a
sub-domain census for 2.8 6 t 6 9.2. We start the census only at t = 2.8, since the
size of the computation is quite large before then. For very early times (i.e. t 6 O(1)),
the vortices have not yet become well enough organized from the random initial
conditions for a census to be reliable. In practice, the sampling errors introduced
by a sub-domain census do not seem excessive, as can be judged from the figures
below near where the two sampling procedures overlap. Since the census calculation
makes use of data from only a single time, a general indication of its sampling errors
comes from the size of the incoherent temporal fluctuations in its population-mean
estimates. These errors also are modest compared to the evolutionary trends in the
vortex statistics that are our primary focus.

In summary, the census measures the properties of the vortex population at a
given instant in time. The census counts the number of extrema in the vorticity field
ne, the number of those extrema which qualify as coherent vortex elements nve, and
the number of resulting compound vortices ncv . Each vortex element is described by
its position, amplitude qve, planar area A, planar circumference C , planar radius R,
planar ellipticity ε, planar circulation Γ , planar enstrophy Z , half-height h, and axial
tilt T .

3. The census report
We perform the census for 41 times between t = 2.8 and 72.1, with both full- and

sub-domain calculations at the transition time, t = 9.2. The times are distributed
with an approximately exponentially increasing spacing, since the evolution of most
statistical measures of turbulence has an approximately power-law dependence on
time. Such temporal scaling behaviour and its implied self-similar statistical evolution
are obviously of great theoretical interest here (as they also have been for two-
dimensional turbulence). This hypothesis is difficult to test unambiguously, even with
the rather large size of the MWY94 solution. To do so would require a larger value
for the initial spectrum-peak wavenumber, κ0, in order to have a larger nve at the time
of vortex emergence. A larger κ0 would imply a smaller effective Re for the vortex
evolution, unless the computational grid size were also increased, which was infeasible.
Nevertheless, we plot many of our census results logarithmically against time and
summarize their forms through approximate power-law fits (see table 1 for estimates of
the temporal exponents). The results are strongly suggestive of approximate temporal
scaling behaviour (e.g. for the vortex population shown in figure 2) beginning well
after the time of vortex emergence (e.g. figure 1) and stopping well before reaching
the non-turbulent end state (e.g. figure 3).

After the initial period of emergence (t < 2), the population size decreases with
time. This trend has several causes. Existing vortices disappear both by vortex amal-
gamation through merger and alignment and by vortex destruction through straining
deformations. Also, new vortices emerge only rarely from the background (i.e. non-
vortex) component of the q field at later times. This evolution is shown in figure
4, for both the number of three-dimensional extrema, ne(t), found in step 1 of the
census algorithm, and the number of compound vortices, ncv(t), detected in step 6.
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Scaling Theory

Quantity Fit Lv ∼ n−1/3
v Lv ∼ Rv

ncv −1.25± 0.10 −1.25 −1.25

〈qve〉 +0.02± 0.07 0.0 0.0

〈a〉 −0.03± 0.05 0.0 0.0

E −0.003± 0.001 0.0 0.0

〈Γ 〉 +0.45± 0.10 +0.55 +0.50

〈Z〉 +0.34± 0.10 +0.55 +0.50

〈R〉 +0.29± 0.05 +0.28 +0.25

〈h〉 +0.28± 0.05 +0.28 +0.25

Z −1.0± 0.2 −0.42 −0.50

〈D〉± +0.43± 0.05 +0.42 +0.42

Table 1. Power-law exponents. The fitted values for the exponents are averages of estimates for
several different intervals during the period 10 6 t 6 70; their uncertainties represent the spread of
these estimates, which is larger than the standard error of any given fit. The scaling theory exponent
for ncv is determined directly from the solution fit.

The ratio between them, ne/ncv , decreases with time, indicating an increasing degree
of organization of the turbulence into well formed vortices. The functional form for
ncv(t) roughly matches a power law, ∼ t−γ with γ ≈ 1.25± 0.10, at intermediate times
well after vortex emergence and well before the approach to the non-turbulent end
state. The error estimate here is dominated by the choices of the beginning and end
times for the time interval within which to make the power-law fit. The differences
between the fitted exponents due to the end-point choices are substantially larger
than the standard error for the fit with any particular interval. This fitted value for
γ is consistent with the QG census analysis in McWilliams (1990b), and it is signifi-
cantly larger than the value found in a temporal scaling regime of two-dimensional
turbulence, γ ≈ 0.725± 0.025 (Carnevale et al. 1991; Weiss & McWilliams 1993). We
rationalize the larger γ of geostrophic turbulence as an indication of the increased
opportunities for close approaches among vortices, hence for strong interactions that
can decrease the population, in three dimensions compared to two.

Figure 5 shows the population size for both vortex elements and compound vortices,
with nve(t) > ncv(t) by definition. A striking result is how close these two numbers are
near the time of emergence, and how slowly they develop any appreciable difference.
Even at the final time, corresponding to figure 3, their ratio is only 1.3. Thus, even
after many close approaches, the alignment process yields relatively few compound
vortices with well-distinguished multiple extrema along the vertical axis. Assuming
that the alignment process is efficient, one would expect that the interaction of nearby
same-sign vortices with small vertical separation would result in a single compound
vortex composed of multiple vortex elements. Since q cannot be transferred between
different levels by advection in (2) and (6), such a compound vortex would, in the
inviscid case, last until disrupted by further vortex interactions. The scarcity of such
compound vortices must thus be due to one of several possibilities: efficient blending
of separate extrema on the axis by the vertical diffusion terms in (2) (see (A 1) in
Appendix A); inefficient amalgamating due to a relatively small interaction cross-
section for two vortices with O(h, R) vertical separation between their extrema; or
frequent severing of aligned compound vortices at their connecting weakest q value
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Figure 4. The number of extrema and compound vortices, ne(t) and ncv(t),
from the vortex census.

through straining interactions with other vortices. A diffusion time on the vortex
scale, h2/ν, is much larger than the solution times under consideration here. Diffusion
can only be effective in blending vertical extrema if very sharp q gradients develop
near the extrema along the axis during merger or alignment, but this would be
inconsistent with the approximate preservation of q extremal values (see figure 6
below). So we conclude that diffusion is not the primary explanation. The pair-
interaction study by Sutyrin et al. (1998) demonstrates a reduction in the tendency
towards alignment for like-sign vortices with O(R) vertical separation and smaller
horizontal separation, compared to the tendency with both separations O(R). So
perhaps alignment interactions, even if frequent, are rarely carried to completion.
Also, we see frequent and persistent same-sign, multi-vortex interactions in animations
of q(x, t) (manifested in the clustering behaviour analysed in § 5), and perhaps this
also inhibits the completion of alignments or contributes to severing of compound
vortices. Finally, in the inhomogeneous, Charney-anisotropic solution in McWilliams
(1989) – where the vertical size of the domain is relatively small and the vertical grid
resolution is coarse – there is a much greater abundance of compound vortices with
multiple vortex elements than in the MWY94 solution.

Figure 6 shows the vortex amplitudes, both the strongest one, max [qve](t), and the
population mean, 〈qve〉(t). The strongest extremum has a steady decrease, cumulatively
by about 50% over the duration of the analysis. This is quite small compared with
the r.m.s. measure of the potential vorticity, Z1/2, that decreases by about 90%
(see Appendix A). The scaling theory of two-dimensional turbulence is based on
the assumption that the amplitude of a vortex extremum is preserved as long as
the vortex survives (Carnevale et al. 1991), and we believe this assumption may
also be appropriate for geostrophic turbulence as Re → ∞ (see § 4). The rationale
is that the centre of a coherent vortex experiences little deformation, hence little
strain-enhanced diffusion to weaken the extremum, as long as other vortices either
remain distant or are sufficiently weaker in amplitude that close encounters do not
disrupt the stronger vortex. Obviously, these conditions are not met precisely in the
MWY94 solution, although the decrease in max [qve](t) here is somewhat smaller than
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Figure 5. The number of vortex elements and compound vortices, nve(t) and ncv(t),
from the vortex census.
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Figure 6. The largest and population-mean vortex-element amplitude, max [qve](t) and 〈qve〉(t),
from the vortex census.

in the McWilliams (1989, 1990b) solution with its smaller Re value. In contrast, the
population-mean amplitude, 〈qve〉(t), has an initially small decrease near the end of
the relatively dissipative emergence phase and then a steady increase for a lengthy
time interval between t ≈ 4 and t ≈ 15. This growth behaviour is also seen in
the McWilliams (1990b) analysis. Since an individual vortex amplitude should only
decrease in (2) and (A 1) – at least for sufficiently smooth vortex profiles to avoid
the anti-diffusive behaviour possible with hyperdiffusion – then an increasing 〈qve〉(t)
implies an evolution in the population distribution function for qve wherein the
number of weak vortices declines more rapidly than the number of strong ones. This
is consistent with the idea that pair interactions between unequal vortices deform the
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Figure 7. The population-mean vortex-element planar circulation and enstrophy,
〈Γ 〉(t) and 〈Z〉(t), from the vortex census.

weaker one more and cause it to disappear from the census count: the weaker vortex
is either deposited within the profile of the stronger one by amalgamation or sheared
out until diffusion further weakens it. After t ≈ 15, there is little further evolution of
〈qve〉(t); this is suggestive of a scaling regime with a self-similar population distribution
function.

Figure 7 shows the evolution of the population-mean vortex-element planar circu-
lation and enstrophy, 〈Γ 〉(t) and 〈Z〉(t). They both are steadily increasing with time.
Before t ≈ 15, 〈Γ 〉(t) and 〈Z〉(t) grow even more rapidly than afterwards. This is con-
sistent with the interpretation, given to figure 6 above, that smaller, weaker vortices
are experiencing a disproportionately high destruction rate through interactions with
larger, stronger vortices during this phase of population adjustment. After t ≈ 15, the
functional forms are approximately power laws, ∼ tα. We can fit 〈Γ 〉(t) with a value
of αΓ ≈ 0.45± 0.10, while the value for 〈Z〉(t) is smaller by perhaps 25% during the
period after t ≈ 15 (see table 1). Since these two quantities differ in their dependence
on q inside the vortices, but not in their dependence on the planar area within a
vortex, we deduce from the rough equivalence of their α values that changes in the
vortex radius are the primary influence on their evolution. This is consistent with the
interpretation that horizontal merger is an important evolutionary process here, since
it conserves the q amplitude in the core of a participating vortex but increases its
area. On the other hand, from the modest difference in the α values for 〈Γ 〉(t) and
〈Z〉(t), we deduce that there is also some evolutionary change in the planar profile
shapes for q in the same sense as diffusion (i.e. acting to decrease Z while preserving
Γ ). Hence, the vortex cores are not entirely free from dissipative influences in our
solution. These values for α are close to the value in the temporal scaling regime for
two-dimensional turbulence (i.e. where αΓ ≈ 0.38± 0.02; Weiss & McWilliams 1993),
where horizontal merger is the dominant evolutionary process for vortices.

The growth in vortex size is evident in figure 8. The mean radius, 〈R〉(t) grows more
rapidly before t ≈ 15 and more slowly afterwards, with an approximate power-law
form at later times and an exponent αR ≈ 0.29± 0.05. This value is somewhat larger
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Figure 8. The population-mean vortex-element radius, 〈R〉(t), half-height, 〈h〉(t),
and aspect ratio, 〈a〉(t), from the vortex census.

than but not greatly inconsistent with either the value in the temporal scaling regime
for two-dimensional turbulence (i.e. αR ≈ 0.19) or with the interpretation given above
for planar circulation and planar enstrophy increasing roughly ∼ 〈R〉2. Again we find
support for the ideas of early-time population adjustment and the importance of the
merger process.

Particularly striking in figure 8 is the near constancy of the population-mean
vortex-element aspect ratio, 〈a〉(t). The aspect ratio is constant throughout the time
period where other quantities show approximately scaling behaviour, as well as before
and after this period. Consistent with 〈a〉 constancy, 〈h〉(t) has a systematic growth
that closely matches that of 〈R〉(t). In the stretched isotropic coordinates in which
this solution is calculated (Appendix A), a value a = 1.0 corresponds to Charney
isotropy for the vortex q(r, z) profile. The measured value here is 〈a〉 ≈ 0.83 ± 0.03.
This indicates that the elemental vortices are somewhat flattened ellipsoids rather
than Charney-isotropic spheres. This sense of deviation from isotropy is the same as
seen in MWY94 in the spectrum for the intermediate wavenumber range between
the energy peak and the dissipation range. The inhomogeneously and anisotropically
posed problem in McWilliams (1989, 1990b) also has an approximate constancy of
〈a〉(t), but at a much larger value of 〈a〉 ≈ 1.5. We interpret this difference as due to
the difference in posing – in particular the influences of a small domain aspect ratio,
solid vertical boundaries, and coarse vertical resolution on increasing the barotropic
component of the flow.

The dynamical mechanism for 〈a〉 constancy is poorly known. One can argue
generally that a values are limited from above and below by barotropic and baroclinic
instability, respectively, although such instabilities are precluded for the particular
profile shape of a q-monopole. One can argue that h can grow through alignment
interactions, particularly those between vortex elements whose central extrema are
vertically separated by a distance O(h), but the absence of compound vortices with
multiple vortex elements (figure 5) argues against this being a common process except
perhaps for rather small vertical separations. Although h cannot grow by vertical
advective fluxes with the QG operator (6), it can grow diffusively by (A 1) at a slow
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Figure 9. The population-mean vortex-element distortions from the vortex census:
the planar ellipticity, 〈ε〉(t), and the vertical tilt, 〈T 〉(t).

rate of ν/h2 = O(Re−1) for undisturbed vortices. Thus, there are several possible
mechanisms for h growth, but none of them are yet known to have a strong selection
for a constancy. Perhaps the most plausible hypothesis is that geostrophic vortices
experiencing frequent episodes of deformation by a varying large-scale strain field
relax dissipatively towards the ideal axisymmetric, aligned configuration in a way
that strongly pushes its aspect ratio towards an a value somewhat less than unity. Of
course, this hypothesis is in need of further proof.

The strain in the far field of a geostrophic vortex decreases ∼ d−3 where d is the
distance from the vortex. The aggregate strain field of the vortex population is the
cause of vortex deformations away from the ideal shape. The closest neighbouring
vortices contribute the most to the strain field, and particularly close approaches
cause particularly large deformations that lead to dissipation, merger, and alignment.
Since the vortex population decreases with time (figure 4), the average separation

between vortices increases. We estimate the average separation as d ∼ 2πn
−1/3
ve , hence

the mean strain rate as ∼ n−1
ve . Thus, the average magnitudes of the strain field and

resulting deformation should also decrease. The latter behaviour is shown in figure 9,
with respect to deviations both from horizontal axisymmetry, 〈ε〉(t) and from vertical
alignment, 〈T 〉(t). Both measures decrease with time as is qualitatively expected. Their
values are O(1), indicating that deviations from the ideal vortex shape are substantial
except at very late times. Because of the evident curvature in their histories and the
large temporal fluctuations in T , power-law fits to figure 9 are not well constrained.
Nevertheless, we can conclude that the decay exponent is greater for T than for ε.
The former is perhaps not greatly inconsistent with the decay exponent, γ, for nve and
the mean strain rate, while the latter is clearly smaller.

4. A mean-vortex scaling theory for geostrophic turbulence
Encouraged, though not yet fully convinced, by the indications of scaling behaviour

seen above, we can construct a simple scaling theory for a temporally self-similar evo-
lution of the vortex population in geostrophic turbulence. It is based upon representing
the fields in terms of a finite number, nv , of coherent vortices, each with amplitude qv ,
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radius Rv , and height hv . For simplicity, we assume that all the vortices have the same
values for these properties, i.e. we base the representation on a ‘mean vortex’. Other
vortex properties are constructed from these primary ones, e.g. Γv ∼ qvR2

v , Zv ∼ q2
vR

2
v ,

etc.
Within this representation, we make the following assumptions about what is

conserved in decaying geostrophic turbulence as Re→∞.
Energy: Using a Green’s function representation for the solution of the three-

dimensional Poisson equation in (7), we can write the total energy in terms of the
potential vorticity as follows:

E =

∫
dx1

∫
dx2 q(x1) q(x2)G(x1, x2), (9)

where G ∼ |x1−x2|−1 in an infinite domain, with suitable corrections for the periodic
domain of the MWY94 solution. Taking into account the partial cancellation among
contributions to (9) from vortices of opposite sign, we can approximate the energy
using our mean-vortex representation as

E ∼ nv[qvhvR2
v ]

2/Lv,

where Lv is a length scale. In the analogous scaling theory for two-dimensional
turbulence, the energy depends on Lv in the form log (Lv), via the two-dimensional
Green’s function, and since logarithmic corrections are ignored in this scaling theory,
no choice for Lv is required. Here E ∼ 1/Lv , and we must choose the length scale.
There are two obvious choices based on scaling E as either the interaction energy
for distant vortices, or as the self-energy for individual vortices. In the former case

the appropriate length scale is the typical pair separation distance, Lv ∼ n
−1/3
v , while

in the latter case the appropriate length scale is the typical vortex size, Lv ∼ Rv . We
currently have no reason to choose one length scale over the over, and we present
the scaling theory with both possible choices. (Interestingly, we shall see that the
predictions are not quantitatively very different between these two choices.)

Vortex amplitude: qv .
Vortex aspect ratio: av ∼ hv/Rv .

The first assumption of total energy conservation is well satisfied in the MWY94
solution with its large but finite Re (see Appendix A). The second assumption of
qv conservation is only approximately correct for this solution (e.g. see figure 6),
and, because of our particular vortex representation of E above, the first assumption
is also only approximately correct. These two assumptions are the same as in the
temporal scaling theory for two-dimensional turbulence (Carnevale et al. 1991). The
third assumption of constant aspect ratio is strongly supported by figure 8.

The final ingredient is the assumption that all statistical measures have power-law
dependence on time. In particular, we assume that the population size decreases as

nv(t) = nv(t0)

(
t

t0

)−γ
∼ t−γ (10)

for t0 any time within the interval of scaling behaviour, with an empirically determined
value for the exponent γ (e.g. γ = 1.25 from figure 5). We interpret the decreasing
population size as the net of losses through merger and alignment and gains through
new vortices emerging from q filaments outside vortices (although we have not yet
seen many examples of the latter).

With these ingredients we can derive the temporal exponents for the other quantities.
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Thus, the scaling theory predicts all exponents in relation to a single, empirically
determined exponent, γ (i.e. the exponent for property µ is αµ = αµ[γ]). The exponent
γ remains a parameter of the theory that is undetermined a priori. Assumed, fitted, and
predicted values for the power-law exponents of various quantities are summarized
in table 1. The size measures, hv and Rv , have αh = αR equal to either 2γ/9 = 0.28 or
γ/5 = 0.25, respectively, depending upon the choice of Lv in E. These estimates are
close to each other and they compare favourably with the empirical fits to figure 8.
In addition, Γv and Zv have exponents αΓ = αZ = 2αR , whose value is either 0.55 or
0.50. These values are somewhat larger than those from the fits to figure 7, indicating
greater q dissipation within the surviving coherent vortices in the numerical solution
than is assumed in the scaling theory.

As in the two-dimensional counterpart to this theory, we can make a mean-vortex
estimate for the total potential enstrophy evolution, namely

Z ∼ nvq2
v hvR

2
v . (11)

This yields a decay law of either ∼ t−γ/3 or ∼ t−2γ/5, respectively. The numerical value
for this exponent is either −0.42 or −0.50, respectively, for γ = 1.25. In contrast,
a power-law fit to Z(t) calculated from the MWY94 solution has an exponent of
−1.0 ± 0.2, appreciably larger than that predicted by (11). This is a further indication
that enstrophy dissipation is greater in the finite-Re numerical solution than in the
infinite-Re scaling theory above. There is a similar discrepancy for the enstrophy
decay exponent rate in two-dimensional turbulence (Weiss & McWilliams 1993).

5. Vertical alignment and clustering
In figure 3 we see a domain-scale ordering among the vortex positions that develops

at late time. Here we present some quantitative measures of this collective behaviour.
The cause of the positional ordering is the strain-induced deformation among like-

sign vortices that instigates the merger and alignment amalgamation processes. These
processes are most familiar as pair interactions, so we begin with pair statistics. For
each compound vortex we measure the distance to all other vortices and select the
nearest neighbour. The distance is taken as the minimum over all separations between
the vortex elements contained within each of the compound vortices. Because few
vortices have multiple vortex elements except at late time (figure 5), the distinction
between primary and secondary q extrema is not very significant. For each vortex i,
we denote the minimum separation vector by Di, and minimum distance by Di = |Di|.
We also measure the absolute value of the angle of the minimum separation vector
from the horizontal plane. Thus, if Di = (Xi, Yi, Zi), then the angle is

θi = tan−1

[
|Zi|√
X2
i + Y 2

i

]
. (12)

Figure 10 shows the population-mean, near-neighbour separation angles, 〈θ〉±(t),
distinguished by whether the nearest vortex has the same (+) or opposite (−) sign
in q. At early time, 〈θ〉± has a value close to the mean angle for a random vortex
distribution, denoted by θ0. Since an infinitesimal volume element dX dY dZ is equal
to R2 cos θ dR dθ dφ in spherical coordinates, the most probable angle is

θ0 =

∫ π/2

0

θ cos θ dθ

= π/2− 1. (13)
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Figure 10. The population-mean angles, 〈θ〉±(t), relative to the horizontal plane, between pairs of
nearest neighbour vortices, segregated by whether the pair is like-sign (dot-dash and solid lines)
or opposite-sign (dashed and dotted lines) in the q extrema. The separation distance is measured
between the nearest vortex-element extrema. The reference line at θ0 = π/2 − 1 is the value for a
random orientation of separations.

Thus, there is no particular angular ordering as a result of the vortex emergence
process. With further vortex evolution, 〈θ〉+ grows while 〈θ〉− does not. This distinction
begins to develop somewhere around t = 7, although it is difficult to be precise because
of the large sampling error evident in figure 10 during the last part of the period
in which sub-domain census sampling is used. Nevertheless, at late times a nearby
like-sign vortex is much more likely to lie within a cone above or below its neighbour
than to lie outside the cone. Mergers act to deplete nearby like-sign vortices outside
the cone, and alignment acts to attract and retain nearby like-sign vortices within
the cone. Since 〈θ+〉 remains well below π/2 even at late times, this indicates that
alignment interactions usually do not proceed to completion. Furthermore, the vortex
clusters support wave-like behaviour around the cluster axis which distorts the column
from the vertical and makes θ+ < π/2 (Clyne et al. 1998). These waves are probably
induced by variable straining from vortices outside the cluster, although once induced
the waves are sustained by conservative interactions among the non-aligned vortices
within the cluster (e.g. as in a QG point-vortex system).

The nearest opposite-sign vortices also have a persistent bias in their separation
angle, such that 〈θ−〉 is slightly smaller than θ0. This may be due to a baroclinic
instability process that results when opposite-sign alignment occurs and the vertical
shear is locally enhanced.

Figure 11 shows the the population-mean, near-neighbour separation distances,
〈D〉±(t), segregated by whether the nearest pair has the same (+) or opposite sign
(−) for its q extrema. Here we see no significant difference between 〈D〉+ and 〈D〉−,
neither after emergence nor with further evolution. Furthermore, both of 〈D〉± have a
power-law (scaling) form, 〈D〉 ∼ tα, with α = 0.43±0.05 after about t = 10. This value
for α is very close to what results from the assumption that vortices are distributed
in a volume-filling way, with 〈D〉 ∼ n

−1/3
cv ; i.e. α = −γ/3 = 0.42 for γ = 1.25 from

figure 4. The actual values for 〈D〉 in figure 11 are only about one-quarter as large
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Figure 11. The population-mean distance, 〈D〉±(t), between pairs of nearest neighbour vortices,
segregated by whether the pair is like-sign (dot-dashed and solid lines) or opposite-sign (dashed
and dotted lines) in the q extrema. The distance is measured between the nearest vortex-element
extrema in separate compound vortices.

as they would be if the vortices were uniformly distributed on a lattice, D0 = 2πn
−1/3
cv

and even a little less than half as large as the average nearest neighbour distance for
completely random distribution, 〈Dr〉 ≈ 1.1πn

−1/3
cv (see Appendix B). This indicates

that the nearby vortices are usually closer together than would occur with uniform
or random positioning.

We next examine the global ordering among vortices by constructing a lag-
correlation function among the compound vortex centers. We define this as

C(r, z) = siqcvi sjqcvj

∣∣∣|xi−xj |≈√r2+z2

/
〈q2
vi
〉, (14)

where si = ±1 is the sign of the qcv extremum in vortex i, the overbar denotes an
average over all vortex pairs whose horizontal and vertical separation distances are
r and z, and the angle brackets denote an unconditional average over the vortex
population. The sampling requirements on estimating C accurately are rather severe,
since it requires there be many vortex pairs with separation distances close to each
(r, z). In practice we choose to bin the separation distances with a somewhat large bin
size of ∆r = ∆z = 0.2 for calculating the conditional averages in (14). However, even
with large bins estimates of C(r, z) are somewhat noisy. Therefore, we shall measure
the global positional ordering by an appropriate integral moment of C , defined below.
Our goal is to measure the degree that like-sign vortices cluster in configurations that
are approximately aligned in the vertical.

During the period shortly after vortex emergence, C(r, z) is indistinguishable from
zero at all non-zero spatial lags. Over time an ordering develops that is qualitatively
similar to the one indicated by the near-neighbour angle distributions: C > 0 for
z > r and C < 0 for r > z. This ordering starts initially at small lag distances,
D =

√
r2 + z2, and extends further outward with further evolution. We define an
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integral moment to measure this behaviour in C(r, z) by

IC =

∫ rmax

0

∫ zmax

0

C(r, z)F(θ(r, z)) dr dz, (15)

and its time history is plotted in figure 12. As above, θ = tan−1[r/z] is the positive
angle of the separation vector away from the horizontal plane (as in (12)). We
evaluate (15) by discrete quadrature and choose rmax = zmax = 2.0. To accomplish
the measurement of clustering behaviour, the function F(θ) is negative for like-sign
vortex separations that are mostly horizontal and positive for ones that are mostly
vertical. Thus the positive magnitude of IC is a measure of the degree of the global
ordering described above. A simple choice for F with this character is the function
F(θ) = − cos 2θ. A similar but somewhat better choice is one based on the most
probable angle for random vortex distributions, θ0 from (13). The desired function
mimics the properties of F(θ) = − cos 2θ except for being centred about θ0. We choose
a piecewise cubic spline that has values and derivatives at θ = 0, θ0, and π/2 of

F(θ) =

 −1, θ = 0
0, θ = θ0

+1, θ = π/2
F ′(θ) =

 0, θ = 0
1, θ = θ0

0, θ = π/2.

This function is

F =

{ −1 + θ(θ − θ0)/θ0, 0 6 θ 6 θ0

(θ − θ0) + (θ − θ0)
2 − (θ − θ0)

3, θ0 6 θ 6 π/2.
(16)

The resulting IC(t) is shown in figure 12. Its early value is essentially zero, indicating
a lack of global ordering among vortex positions, but later it becomes increasingly
positive, indicating the development of clustering. A very similar result is obtained
with the alternative function F = − cos 2θ, indicating that the choice of an integral
weighting function is not a particularly sensitive one. Positive values of IC begin
to develop after about t = 15. This is later than the appearance of near-neighbour
angle differences (figure 10), and it indicates that the global ordering among vortices
evolves out of the prior pairwise ordering. The value of IC continues to increase
as the solution approaches the end-state configuration of two fractured columns of
like-sign vortices.

6. Discussion
Our vortex census demonstrates some of the important properties of coherent

vortices in decaying geostrophic turbulence. Through non-conservative interactions
among close vortices, the population evolves towards fewer, larger, and sparser
vortices. We find statistical evidence that is consistent with the importance of the
aggregation processes of merger and alignment between like-sign vortices: horizontal
and vertical size growth, vertical clustering, and a late-time approach to the non-
turbulent end state of two aligned, like-sign columns of vortices. We also find that there
is a regime of approximately self-similar temporal evolution in the vortex statistics (i.e.
with power-law functional forms) during a somewhat brief interval that starts after
an earlier period where small, weak vortices are more likely to be destroyed and ends
before the approach to the end state. Furthermore, we present a mean-vortex scaling
theory based on the conservation of energy, vortex extremum, and vortex aspect
ratio. Its predictions are approximately consistent with the measured ratios among
the power-law exponents for vortex properties, albeit with modest discrepancies that
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Figure 12. Covariance time series, IC , between C(r, z, t) and F(θ) as defined in (15)–(16). Positive
values indicate vertical clustering among like-sign vortices.

are plausibly due to a greater enstrophy dissipation rate in our solutions than might
occur with a larger value for Re. Because of the limited size of both Re and the vortex
population size, we cannot assess the scaling hypotheses with great certainty.

Despite the uncertainties in our results there is a strong likelihood that we have seen
a glimpse of the generic high-Re behaviour for at least a class of initial conditions with
a narrow-band spectrum. In scouting for the MWY94 solution, we examined solutions
on coarser grids, with different initial conditions and dissipation operators, and at
lower Re; in all cases the phenomenology was similar to what we have reported here.
If we were able to calculate a solution with extremely high Re, a narrow-band initial
condition would be well separated from both the domain scale and the dissipation
scale. Here, the grid resolution allows only a single order of magnitude to separate
the initial flow scale and each of the other two scales. It seems plausible that this
is sufficient to see the beginnings of high-Re behaviour. But this is still a somewhat
modest realization of this asymptotic limit, and the temporal scaling behaviour might
be more unambiguous at higher Re. In two-dimensional turbulence, temporal scaling
behaviour was first identified at Re values close to the present one, and later it was
confirmed at much higher Re (Bracco et al. 1999).

From the analogy with two-dimensional turbulence, we would not be surprised if
broad-band initial conditions gave rise to spatial scaling behaviour, at least for some
time interval, rather than the temporal scaling seen here (Santangelo, Benzi & Legras
1989; Weiss 1999; Bracco et al. 1999). Thus, the temporal scaling behaviour applies
to turbulent flows in which random perturbations inject enstrophy into the fluid with
a well-defined length scale, as could occur in a mean-flow instability process. We have
not yet examined solutions for forced, equilibrium geostrophic turbulence, at least
in part because of our uncertainty about how to choose the forcing in a physically
relevant way. Our expectation is that coherent vortices could play a significant role
in this regime, at least on scales as large or larger than the forcing scale (cf. Borue
1994). On the other hand, we also expect important differences in vortex and turbu-
lence dynamics on planetary scales due to a small domain aspect ratio and spatial
variations in f and N.
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The interaction dynamics among geostrophic vortices are not yet very well under-
stood, but we can infer some additional information about their outcomes from the
census report. The vortex population number decays much faster for geostrophic
vortices than for two-dimensional vortices, consistent with a faster enstrophy decay
rate. This implies that the three-dimensional processes that amalgamate or destroy
geostrophic vortices are more efficient than in two dimensions. We find that an
alignment event among close vortices is not often carried to a complete amalgamation,
since relatively few compound vortices develop that are composed of more than a
single vortex element and the average separation angle among nearest like-sign
neighbours remains well below π/2. This is consistent with the existence of a hole
in the pair-alignment critical separation curve for a radial separation distance that is
small compared to the vertical one (Sutyrin et al. 1998), as well as the persistence of
non-aligned wave-like motions within clusters (Clyne et al. 1998). Therefore, either
straining destruction of nearby vortices (without amalgamation) or merger between
vortices with a relatively small vertical separation between their core extrema, or
both, must occur with a greater frequency in geostrophic turbulence than do mergers
in two-dimensional turbulence. Nevertheless, at least a tendency towards alignment
is evidently the result of some important interaction process, since strong vertical
clustering develops and eventually leads to a global organization of the surviving
vortices into the non-turbulent, columnar end state. Another inference is that a
preferred vortex aspect ratio is strongly selected during vortex interactions, causing
the vortices to have a shape that is a distorted form of Charney isotropy: the mean
aspect ratio is a = 0.83 in stretched coordinates, and the equivalent Burger number
based on physical coordinates, B = (Nh/fR)2, is 0.7. Barotropic and baroclinic
instabilities in QG dynamics might be invoked broadly to preclude particularly large
and small values of B, respectively, but this does not seem a sufficient explanation for
the very small B variations we measure here. This argument is even stronger insofar
as the elemental vortex shape is a q-monopole that is linearly stable for any value
of B. Thus, we infer that the non-conservative relaxation of an initially deformed
vortex towards the ideal axisymmetric, aligned, stationary configuration must involve
q filamentation that efficiently moves B towards its preferred value (e.g. as during the
late stages of vortex merger; von Hardenberg et al. 1999). Finally, we have noticed
in viewing animations that close, multi-vortex interactions are frequent and often
persistent, to a much greater degree than in two-dimensional turbulence. Therefore,
we suspect that the population evolution cannot be explained entirely in terms of
pair interactions alone, hence some reconsideration is warranted for the conceptual
picture that coherent vortices are usually well separated from each other except for
rare, brief, dissipative, pairwise close encounters.

The descriptive nature of this census report indicates that there remain significant
open questions about the interaction dynamics among three-dimensional, QG coher-
ent vortices. We believe they can, and should, be addressed in idealized initial-value
problems. Our hope is that a systematic understanding of vortex dynamics will provide
the basis for a conceptual and computationally realizable theory for homogeneous
geostrophic turbulence.
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Appendix A. The MWY94 solution
The equations (2)–(6) are solved in non-dimensional form in the stretched isotropic

coordinates defined preceding (7). The computational domain is [0, 2π]3, with periodic
boundary conditions in all directions. The dynamical evolution is unforced, and the
form we choose for the dissipative operator in (2) is biharmonic hyperdiffusion, namely

NCT = −ν∇4q. (A 1)

This is a three-dimensional Charney-isotropic operator that implies that both E andZ
be non-decreasing in (2) (i.e. in the absence of computational errors), although it does
not assure that isolated q extrema are non-increasing for non-smooth fields (unlike
Newtonian diffusion). The hyperviscous coefficient is chosen as ν = 1.14×10−8, which
is as small as is consistent with at least marginally smooth solutions on the grid.

The choice of a hyperdiffusion operator is motivated by the desire to have a
weaker dissipation on a given computational grid than occurs with Newtonian dif-
fusion. While the effects of this choice have not been systematically investigated in
QG turbulence, they have been explored extensively in two-dimensional turbulence
and other fluid dynamical regimes. On the basis of this experience, we may rea-
sonably assume that the results of this paper are not strongly influenced by the
choice of dissipation operator. Our understanding of turbulent cascades is that the
details of enstrophy removal in the dissipation range do not greatly affect the larger
scales, especially where an inverse cascade occurs. The form of the sub-grid-scale
parameterization of dissipation in two-dimensional turbulence does not impede the
self-organization into coherent vortices and their merger interactions, although it can
affect the profile of the vortex cores at late times (Shchepetkin & McWilliams 1998).
But since the population dynamics is largely governed by mutual advection of sep-
arated vortices these profile differences should not be very important in determining
the population statistics, except in ways that can be generally understood as a Re
dependence (see § 6).

The initial conditions are a random-phase realization of a narrow-band, Charney-
isotropic spectrum peaked at κ0 = 22.0, with a normalization such that the initial
energy, E, is unity. The grid size is N3 = 3203, and the integration spans t = 0–72.
The computational method is described in Yavneh & McWilliams (1996). It uses
second-order, centred, finite-difference operators in space and time for (1), (7), and
(A 1). The advection operator is represented as an Arakawa Jacobian. The time-
stepping method is fully implicit using a Multigrid Full Approximation Scheme
iterative solver with partial coarsening (i.e. there is a grid hierarchy in xh but not z).
Moderate computational noise is evident at early time in non-monotonic behaviour
of q extrema, due primarily to dispersive advection errors in the vicinity of sharp q
gradients (rather than as a direct consequence of the hyperdiffusion operator) that
are insufficiently damped by the small ν value used; after a time of ∼ 1 (i.e. before the
vortex-dominated regime of interest here), this noise behaviour becomes quite weak.

The time of the largestZ dissipation rate is t ≈ 1, which is about 10 times the initial
eddy turnover time, 2πZ−1/2. The total decay in E is only 3% over the integration,
whereas the decay in Z is nearly 99%. The kurtosis of q, a measure of spatial
intermittency, grows from its initial Gaussian value of ≈ 3 to more than 100. The
isotropic wavenumber spectrum E(κ) is initially quite narrow. Its peak wavenumber
moves progressively to smaller κ. The spectrum shape for intermediate κ approaches
the enstrophy inertial-range form, ∼ κ−3, around the time of maximum enstrophy
dissipation, but thereafter it steepens with time.
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Appendix B. Nearest neighbour separation among random vortices
We derive 〈Dr〉, the expected near-neighbour separation distance, for ncv point

vortices distributed randomly in a triply-periodic cube of side L in the high-density
limit: ncv � 1. The vortices are assumed to be distributed independently with uniform
random distribution.

Fix a single vortex i at the domain centre. (Due to the periodicity, any vortex can
be considered as being at the centre.) Consider some r 6 L/2. The probability that
any particular point vortex is at a distance smaller than r from vortex i is equal to
the ratio of the volume of the ball of radius r to the volume of the domain: 4

3
πr3/L3.

Hence, the probability that ncv vortices are all at a distance greater than r from vortex
i is

F(r) =
(
1− 4

3
πr3/L3

)ncv
.

The probability that Di – the distance from vortex i to its nearest neighbour – is
between r and r + ∆r is evidently F(r)− F(r + ∆r). Taking the limit ∆r → 0, we find
the density function for Di to be

f(r) = −F ′(r).
The expected value for the distance to the nearest neighbour is given by

〈D〉 =

∫ L/2

0

rf(r) dr =
L

2
F

(
L

2

)
+

∫ L/2

0

F(r) dr,

where we have employed integration by parts. Here we have neglected the probability
that the nearest neighbour is located outside the ball of radius L/2, but this probability
is ∼ exp (−ncv), so it is negligible for large ncv . For the same reason we can now neglect
L/2 F(L/2). Introducing the variable change

r̂ =
(

4
3
πncv

)1/3 r

L
,

we obtain

〈D〉 = L
(

4
3
πncv

)−1/3
∫ 1/2( 4πncv

3 )
1/3

0

(1− r̂3/ncv)
ncv dr̂.

In the limit ncv →∞ the integral tends to∫ ∞
0

exp (−r̂3) dr̂ = Γ (4/3).

This yields

〈D〉 = L
(

4
3
πncv

)−1/3
Γ (4/3) ≈ 0.554Ln−1/3

cv .

Thus, the expected distance between nearest neighbours is a factor of 0.554 its
value if the vortices are distributed uniformly on a lattice. This value was matched
well in computational simulations with several hundreds or thousands of randomly
distributed points.
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